Monday, October 27, 2008

On the occupation of blog editing

I get dozens of emails daily from readers and I generally enjoy them all. I try to respond to most emails.

Sometimes I get comments directly on the blog but those are more rare. I guess that many people prefer anonymity and that is fine.

Many of the comments are from anonymous people and I am frequently torn about whether or not I want to advance their comments. For example, someone may agree or disagree with something that I have written and they want to advance their own opinion on it - but they don't want to put their name with their comment.

This is easily fixed by disabling anonymous comments but some of the most thought-provoking comments are anonymous. All my life I have been fascinated by anonymous self expression - like carving into picnic tables or graffiti or on publicly posted leaflets or pamphlets. That is a topic for another day.

Many of the comments that never get published here are links to people's proprietary websites that sell products and I never wanted my blog to become a trolling site for potential customers. I get the whole 'long-tail' phenomenon but that is not what this blog is about.

Another category of comments that never get published are drive-by hit jobs on people or ideas or products. I don't mind publishing someone's opinion about people or ideas or products (even if their opinion is about me or the things I write) but if they want to engage in drive-by hit jobs then I figure they can at least let people know who they are.

Anyway, sometimes I wish that the dialogue was a little broader but it is what it is. Of the thousands and thousands of hits this site gets we usually only get a comment or so a week. That makes my blog more about my own rants then about bilateral dialogue but I suppose that can change since this is a dynamic observation of the situation.

So my policy that is in effect today is that I prefer people to take responsibility for their comments. If people take responsibility it is more likely their comments will be published. The exceptions are if something is particularly witty or poignant or if I change my mind.

Tuesday, October 14, 2008

Auditory interventions - a trip down the rabbit hole

I posted two and a half years ago about problems with a lack of evidence for the Wilbarger intervention methods. In that post I included a link to which at the time was allegedly sponsored by Pat Wilbarger. Now that website curiously redirects and links to a mirror page for Valerie Dejean and The Spectrum Center, which is now located in New York. Apparently they used to have a center in Maryland, but according to documents from the Maryland Board of Occupational Therapy Practice, it is a matter of public record that a Valerie Dejean surrendered her license to practice for several reasons including:
  • use of the Tomatis Electronic Ear which has been banned by the FDA
  • use of unlicensed persons to practice occupational therapy
  • fraudulent billing practices

I previously wrote about concerns with the Tomatis program and the FDA ban here.

So in summary this Tomatis progam is not generally accepted but some occupational therapists continue to flirt with these programs. I don't understand why.

I called The Spectrum Center today to get more information and they told me that they do not practice occupational therapy in New York state. They are still using the Tomatis device and they told me that they use a combined approach that includes sensory integration techniques and Tomatis. But it is not OT. On their website they call it "vestibular re integration" and claim "80 percent success in improving if not curing these 4000 autistic children."

This is just conjecture - but based on the current prices they reported to me ($400 for an evaluation and $7440 for the 'therapy') that is a windfall of over $30,000,000.00 dollars. That's not a bad days work, especially for someone who had to surrender their license to practice occupational therapy.

The rabbit hole continues - a Dr. Ron Minson owns Integrated Listening Systems. His work is based largely off of Tomatis as stated on his website - but rather than using the banned FDA device his system relies on music recorded on an IPod. They also have a 'device' that they sell (the iLs 1000) but I don't know if this is related to the banned FDA device.

Interestingly, in a fascinating document available online that references the Dejean case, the FDA is asked to evaluate the Tomatis version of the device. Referenced in the petition is that manipulation of the Freedom of Speech principle would allow filtered music to be streamed online or distributed on compact disc. The CDs or online streamed filtered music would presumably be protected as 'Free Speech.'

There are a plethora of 'filtered music' CDs and programs, like Dr. Minson's, that are being marketed and distributed in an apparent loophole around the FDA ban. So with all this filtered music - where are the devices located that MADE the filtered music?

So why mention Dr. Minson specifically? Well he is directly associated with Dr. Lucy Miller and together they co-founded the Sensory Therapies and Research (STAR) facility. The SPD Foundation (formerly the KID Foundation) is a Colorado public charity sponsored in part by STAR Center. According to this page, iLs makes donations and training discounts for the benefit of The SPD Foundation.

The SPD Foundation, from my perspective, has contributed significantly to the knowledge base of sensory processing disorders. But why be entangled with Tomatis and similar programs that are under such heavy criticism. At a time when people are trying to determine if SPD is eligible for inclusion in the DSM, how can alignment with Tomatis help the cause?

A bottom line issue remains - and I am still waiting for someone to stand up and explain this - but I believe that this auditory intervention is only tenuously related to occupational therapy practice. Occupational therapists don't typically intervene with direct auditory stimulation in any other interventions - so how did some practitioners come to think that this is within the OT scope of practice?

When most people think of auditory evaluations or auditory interventions they obviously think that is within the scope of practice of an audiologist or perhaps a speech pathologist. If you search the American Academy of Audiology website for 'Tomatis' there are no results returned. Anyone out there beside me wonder why? Here is the most recent document on the subject from the American Speech Language and Hearing Association. Do OTs know something that the speech therapy professionals don't?

I think that OT as a profession needs to come to grips with this issue. Here is my attempt to start a conversation.

edit 4/21/11 - fixed a few broken links that were moved/redirected.

edit 3/27/12 - again! fixed broken links that were moved/redirected. Does someone not like this post? Also, the website now lists a page in (apparent) Japanese (according to Google Translation) about sushi. TOO FUNNY.

Monday, October 13, 2008

Public Law 110-374 - The Prenatally and Postnatally Diagnosed Conditions Awareness Act.

Abortion rates of children who have disabilities are high, in excess of 90% of all pregnancies of children who have Down Syndrome (Mansfield, Harper, Marteua, 1999). In consideration of recent conversations here I think that it is critical to highlight the passage of a new law. Public Law No: 110-374 is called the Prenatally and Postnatally Diagnosed Conditions Awareness Act. It is the purpose of this Act to--

(1) increase patient referrals to providers of key support services for women who have received a positive diagnosis for Down syndrome, or other prenatally or postnatally diagnosed conditions, as well as to provide up-to-date information on the range of outcomes for individuals living with the diagnosed condition, including physical, developmental, educational, and psychosocial outcomes;

(2) strengthen existing networks of support through the Centers for Disease Control and Prevention, the Health Resources and Services Administration, and other patient and provider outreach programs; and

(3) ensure that patients receive up-to-date, evidence-based information about the accuracy of the test.

This law, while opposed by some ardent partisans, had strong support from people on both sides of the abortion debate. Much of the impetus behind this legislation can be tracked back to the efforts of people like Dr. Brian Skotko. I strongly recommend you go to his site and read some of his work.

I read rather widely and this new law has barely gotten any attention.This law will strengthen the informed consent process around prenatal testing. Spread the word - this may be one of the most significant disability rights laws that we have seen in a very long time. It doesn't matter what side of the abortion debate you may be on - this law is a major step forward in providing real support for families and children.


Mansfield, C., Hopfer, S., Marteau, T. (1999). Termination rates after prenatal diagnosis of Down syndrome, spina bifida, anencephaly, and Turner and Klinefelter syndromes: a systematic literature review. Prenatal Diagnosis, 19(9): 808–812.

Skotko, B. (2005). Mothers of children with Down syndrome reflect on their postnatal support.
Pediatrics, 115: 65-77

Skotko, B. (2005). Prenatally diagnosed Down syndrome: Mothers who continued their pregnancies evaluate their health care providers.
American Journal of Obstetrics & Gynecology, 192: 670-77

Saturday, October 11, 2008

Sensory processing characteristics of adults who have complex regional pain syndrome

I. Literature Review


The purpose of this project was to explore complex regional pain syndrome (CRPS) by using current models of sensory modulation disorder (SMD) and by using narrative interview. Sensory processing theory as grounded in sensory integration theory (Ayres, 1979, p. 5) and later modified by Dunn (1997) provided the background neurophysiological models for this study. Dunn stated that there is a relationship between neurological sensory thresholds and observed behavior (1997). The Sensory Profile was used to provide an assessment of this relationship based on the report of patients who have CRPS. This type of test that measures behavioral responses was used in this study to inform a narrative inquiry to understand the impact that these disorders have on occupation.

Current scholars are integrating sensory integration theory into occupation-based intervention approaches by re-examining ways to broaden Ayres’ original concepts (Parham & Mailloux, 2001, p. 330). Although Ayres may not have explicitly described the impact that disordered sensory systems have on occupations, these concepts can be applied to develop a richer understanding of what it means to have sensory processing difficulties.

Some practice models identify the relationship between the individual, the occupation that is being performed, and the environment. The P-E-O model (Law, Cooper, Strong, Stewart, Rigby, & Letts, 1996) states that behavior can’t be separated from its contextual influences. This type of model was helpful in describing the relationships between personal/constitutional factors, chosen occupations, and illness factors for people who had CRPS.

My initial interest in this topic was generated by seeing patients who developed CRPS and learning that the recommended occupational therapy treatment protocols for this condition include sympathetic stress loading (Carlson & Watson, 1988; Phillips, Katz, & Harden, 2000). These protocols for sympathetic stress loading seemed very similar to the recently popularized “sensory diet” protocol (Wilbarger & Wilbarger, 2002, p. 335-338) used for people who had SMD. My familiarity with both patient populations of adult orthopedics and pediatrics provided perspective and interest in the topic. I continued to read extensively on the topic of pain and pain sensation, initially motivated after reading the groundbreaking work of Melzack & Wall (1965). My interest in the subject has never diminished and this has led me to the literature contained herein and the interest in completing this project.

Studies of sympathetically mediated pain provide evidence that hypotheses regarding central processing may be useful in describing the pathological mechanisms involved in CRPS. Still, a larger question that remains unanswered is whether or not there was an increased risk of developing CRPS because of the sympathetic processing differences or if those differences became evident as a function of the CRPS. To date, there have not been any predictive epidemiological studies of CRPS that would address this basic question.

There is potential utility for exploring the relationships between CRPS and sensory processing. First, if there is a population of people who have SMD and are more at risk for developing CRPS it could be helpful to know who they are so that early intervention could be attempted as soon as they incur an injury to a limb. Second, if there is an underlying mechanism of sensory processing dysfunction that predisposes people to CRPS, this would provide a more solid physiological explanation for what occupational therapists currently identify as SMD. The research that has been completed on CRPS may provide important information for helping occupational therapists understand SMD.

Although any implied linkages between these conditions are theoretical at this time, identifying common features of the disorders could assist in understanding them both at a deeper level.

Complex regional pain syndrome

Complex regional pain syndrome (CRPS) is a disorder characterized by chronic pain that is disproportionate to the trauma that caused the pain. It is important for clinicians to be able to understand different types of pain, and there are clear distinctions between acute nociceptive pain and chronic pain. Nociceptive pain is related to the degree of receptor stimulation that is caused by a specific tissue injury, and involves the normal activation of the nociceptive system by noxious stimuli (Kandel & Jessell, 1991, p. 386-7). By contrast, chronic pain may occur by continued irritation of the nociceptors, which can cause neuroactive, biochemical, inflammatory, or vasoactive effects such as histamine release that can activate or increase the sensitivity in the cellular/receptor environment (p. 386). Over time, peripheral to central processing may also modify nociception, (p. 389-92) and behavioral/emotional states may also influence the perception of pain (p. 398). Chronic pain syndromes can often lead to long-term disability and loss of occupational functioning; for this reason they have been studied extensively and are of interest to occupational therapy practitioners.


Complex regional pain syndrome has been called many different names such as reflex sympathetic dystrophy, causalgia, and Sudeck's atrophy. This disorder commonly occurs in the limbs following an injury. Typical features include dramatic changes in the color and temperature of the skin over the affected limb or body part, intense burning pain, skin sensitivity, sweating, swelling, decreased joint mobility, and changes in nail and hair growth patterns (NINDS, 2003).

The International Association for the Study of Pain developed a classification system that delineates CRPS into two distinct categories (Stanton-Hicks, Janig, Hassenbusch, Haddox, Boas, & Wilson, 1995). In CRPS I the individual may experience regional pain and sensory changes following a trauma. In CRPS II there is also regional pain and sensory changes but a nerve lesion is identifiable. CRPS I is classically associated with the previous entity defined as reflex sympathetic dystrophy; CRPS II is associated with the previously defined condition of causalgia (Baron & Wasner, 2001).


There has been considerable debate regarding the etiology and pathophysiology of CRPS. Sympathetically maintained and sympathetically independent pain categories are phenomena that are referenced in the current classification system (Stanton-Hicks, Janig, Hassenbusch, Haddox, Boas, & Wilson, 1995). Sympathetically mediated pain is typically identified by its amelioration after treatment of sympathetic-blocking intervention, while sympathetically independent pain does not (Manning, 2000). However, it is unclear if these two classes are entirely independent of each other or if they can occur at the same time. This distinction may be important in understanding and developing intervention for CRPS.

Several researchers have investigated sympathetic nervous system functioning in patients who have complex regional pain syndromes. Specifically, several studies indicate that the nervous systems of people who have these syndromes are measurably different than normal. For example, normal inhibitory influences on pain during sympathetic arousal are compromised in the majority of patients with CRPS (Drummond, Finch, Skipworth, & Blockey, 2001). Evidence also exists that patients who have sympathetically mediated chronic pain have widely spread prefrontal hyperactivity, increased activity in the anterior cingulate, and decreased contralateral thalamic activity as measured by functional magnetic resonance imaging (Apkarian, Thomas, Krauss, & Szeverenyi (2001).

Another hypothesis is that there is brain reorganization in the primary somatosensory cortex of patients who have CRPS and that the degree of neural reorganization as measured by magnetoencephalography is directly related to the degree of pain (Maihofner, Handwerker, Neundorfer, & Birklein, 2003). Another study identified a change in the central representation of somatosensation, most likely in the thalamus or cortex, and that sensory threshold are higher on the affected side of the body in people who have CRPS (Rommel, Malin, Zenz, & Jänig (2001).

Preliminary studies demonstrate that brain imaging scans are different for people who have CRPS (Juottonen, Gockel, Silen, Hurri, Hari, & Forss, 2002). Other authors (Schwoebel, Friedman, Duda, & Coslett, 2001) found functional neurological changes in patients who have CRPS. Specifically, they state that patients who have CRPS have impaired body schema involving their painful limbs, suggest atypical processing of proprioceptive, somatosensory, and vestibular sensory inputs. These studies provide evidence that hypotheses regarding central processing may be useful in describing the pathological process involved in CRPS.

Differences in neuroendocrine functioning may explain some alterations in central processing of somatosensory inputs. Janig & Baron (2002) state that nociceptor hyperexcitability may be facilitated by sympathetically-released norepinepherine, which in turn may generate a state of central excitability that causes spontaneous and secondary evoked pain. Therefore, the pain and sensory changes seen in CRPS I may be the result of distorted processing of information in the central nervous system involving the somatosensory pathways.

The pattern of progression of symptoms has also been useful in generating hypotheses about the mechanisms underlying these disorders. For example, Maleki, LeBel, Bennett, and Schwartzmann (2000) describe patterns including contiguous spread, independent spread, and mirror spread. Contiguous spread represents localized progression of symptoms close to the initial injury site. Independent spread represents general nervous system susceptibility for CRPS evidenced by symptoms in distal/unrelated parts of the body. Mirror spread represents contralateral processing errors where symptoms are noted on the opposite side of the body to where the injury occurred. These differing patterns all represent different neurological processing of responses to the initial injury.

Some research is beginning to investigate genetic predisposition for developing CRPS. Janig & Baron (2003) and Wasner, Schattschneider, Binder, & Baron (2003) both reviewed studies that identified possible genetic causes. The studies that have been completed are preliminary; controversy remains regarding the role of genetic factors on this disease.

The presence of psychological factors in people who have CRPS has led to ongoing speculation that there may be a psychological basis for these disorders. A biopsychosocial model (Van Houdenhove & Vasquez, 1993) of CRPS suggests that loss of occupational functioning can lead to helplessness, which in turn causes passive coping and stress-related sympathetic overreactivity and higher norepinephrine levels. The authors suggest that these factors contribute to worsening of symptoms. However, although stress responses may exacerbate symptoms it is now generally accepted that there is no common psychological profile of people who have CRPS (Lynch, 1992). Rather, it is believed that CRPS leads to anxiety and depression rather than anxiety and depression leading to CRPS. This is a phenomenon that continues to be the subject of interesting research that has mixed results. For example, Harden (2003) found that preoperative distress and pain had modest utility in predicting CRPS signs, although there was a high rate of false positive identification. More research is needed to help clarify the relationship between psychological profile, psychogenic predisposition, and CRPS.

Diagnostic tests for CRPS

Diagnostic testing that identifies common parameters of physiologic functioning could be helpful in investigating the possible intersection of CRPS and SMD. However, there is no specific diagnostic test for CRPS. Several medical tests can be used to assist in the diagnosis. Bone scans (Schiepers, 1997) use radiation to identify areas of bone where there may be abnormalities. Infrared thermography (Gulevich,, 1997) measures relative temperature distributions in the limb which may provide information about blood flow and sympathetic activity. Axon reflex testing (Chelimsky,, 1995; Low, Caskey, Tuck, Fealey, & Dyck, 1983), and resting skin temperature/resting sweat output (Chelimsky,, 1995) have also been described in the literature. These are nervous system tests that provide specific information regarding autonomic functioning. Selective tissue conductance (National Pain Foundation, 2003) is a newer diagnostic test that measures galvanic skin responses but it has not been well researched.

In some cases, a sympathetic nerve block can be used to diagnose CRPS in patients with clinical evidence of sympathetically mediated pain; however, not all CRPS is due to sympathetic nerve dysfunction (Rho, Brewer, & Wilson, 2002). Some researchers have tried to identify patients who are at higher risk for CRPS based on other factors including psychological profile, genetics, and sensory processing but none of these are widely accepted and used for diagnostic purposes.

Diagnosis is generally made by the presence of clinical signs and symptoms including dramatic changes in the color and temperature of the skin over the affected limb or body part, intense burning pain, skin sensitivity, sweating, swelling, decreased joint mobility, and changes in nail and hair growth patterns (NINDS, 2003). Additionally, the physician will gather important patient history and rule out any other conditions.

Diagnostic tests for sensory modulation disorders

Pfeiffer & Kinnealey (2003) describe the use of the Adult Sensory Questionnaire (Kinnealey & Oliver, 2002) to determine degree of sensory modulation difficulty but this tool is not widely accessible or commonly used. Kinnealey & Fuiek (1999) also used the Adult Sensory Questionnaire and proposed a model of interrelationship between SMD, anxiety, depression, and pain perception in adults although they noted that more research was needed to clarify these relationships. Preliminary studies (McIntosh, Miller, Shyu, & Hagerman, 1999) support the presence of a physiological basis of SMD, finding that electrodermal responses were larger in children with SMD, excepting those who were non-responders. Additionally, children with atypical electrodermal responses had more parent-reported abnormal behavioral responses to sensation. Miller, (1999) identified Fragile X syndrome as a clinical condition where baseline hyperarousal may exist because unimodal over-reaction predicted hyperarousal in other sensory modalities. Additionally, Schaaf, Miller, Sewell, & O'Keefe (2003) found that cardiac vagal tone index was significantly decreased for children who had identified sensory processing difficulties. These studies provide preliminary evidence that there is a physiological basis for SMD. All of these studies used the Sensory Challenge Protocol (Miller,, 1999) which is a research tool and is not designed for clinical application. A single case study (Reisman & Gross, 1992) using physiological markers of an adult has also been reported to identify improvements following intervention for SMD.

The Sensory Profile is a standardized assessment used by occupational therapists “to measure a child’s sensory processing abilities and to profile the effect of sensory processing on functional performance in the daily life of a child” (Dunn, 1999, p. 1). Dunn states that there is a relationship between neurological sensory thresholds and observed behavior (1997). The Sensory Profile (Dunn, 1999) provides an assessment of this relationship based on the report of the child’s parent. The Adolescent/Adult Sensory Profile (Brown & Dunn, 2002) provides an assessment of this relationship based on self-report. These measures are the most widely used and widely accepted standards used by occupational therapists for assessing SMD.

Summary of diagnostic tests

Both CRPS and SMD are disorders that are not easily identified and are typically diagnosed through the use of tools that involve clinical observations of presenting symptoms or a report of those symptoms. Researchers often measure neurophysiologic characteristics to determine the presence of each disorder. Many of those neurophysiologic markers are common to both disorders in that they represent altered sympathetic/autonomic functioning; however, most of those tests are not easy to administer in a clinical environment.

The Adolescent/Adult Sensory Profile (AASP) represents a behavioral self-report of sensory processing. The AASP measures four quadrants of sensory processing as identified by Brown and Dunn (2002). The four quadrants include sensation seeking, sensation avoiding, sensory sensitivity and low registration. Preliminary studies suggest that this format of assessment is an accurate predictor of altered neurophysiologic functioning. Specifically, this four quadrant model was validated through expert rating and skin conductance testing (Brown, Tolefson, Cromwell, & Filion, 2001).

The AASP is easy to administer and it is non-invasive. As there seem to be common underlying features of CRPS and SMD relating to altered sympathetic functioning, this assessment may be clinically useful for predicting sympathetic hyperarousal that may potentially lead to CRPS. Additionally, if the assessment is sensitive enough to identify the relationship between CRPS and SMD it may provide evidence of a common underlying neurological deficit between the two conditions.

Face validity for the use of the AASP for predicting CRPS

The Adolescent/Adult Sensory Profile is a sixty item self report questionnaire designed as a “trait measure” (Brown & Dunn, 2002, p.1) of sensory processing, meaning that the individual is supposed to answer regarding how they generally respond to sensory stimulation. It does not measure specific response patterns to specific sensory stimulation. The AASP measures responsivity across categories of taste/smell processing, movement processing, visual processing, touch processing, activity level, and auditory processing (p.2). From these scores the assessment provides a profile of sensory processing across four quadrants: low registration, sensation seeking, sensory sensitivity, and sensation avoiding (p.1.). Dunn’s Model of Sensory Processing (1997) is used to explain the relationship between altered neurological thresholds and the impact that this has on daily life functioning.

Based on previously identified evidence of altered sensory thresholds leading to pain and hyperarousal in people who have CRPS, it seems reasonable to apply Dunn’s model to this population. Although the exaggerated state of sympathetic arousal in people who have CRPS is not clinically identical to hyperarousal in people who have SMD, these two conditions may constitute a continuum of pathology that is reflective of sympathetic nervous system dysfunction.

Literature review does not provide information regarding any possible connections between these disorders, although the presence of parallel studies that examine neurophysiologic/sympathetic markers is intriguing. Occupational therapists who understand these two conditions may assist in elucidating common features that will assist in understanding both CRPS and SMD. The significance of this inquiry is considerable. The ability to identify the population of people who are ‘at-risk’ for developing CRPS would be invaluable for clinical purposes of intervention planning. The significance of this is even greater if this can be determined through the use of a non-invasive self-report questionnaire like the AASP. Additionally, there is only beginning physiologic rationale and understanding of SMD. If a link is present between these disorders CRPS may provide an interesting presentation of sensory-affective hyperarousal that can help occupational therapists better understand SMD and how it impacts occupation.


Complex regional pain syndrome and sensory modulation disorder are clinically distinct entities that are often treated by different populations of occupational therapists. As a result, there has not been any literature describing or exploring any intersection of these disorders. There has not been any documentation of discussion regarding the intervention strategies that overlap and address similar underlying components of both disorders.

Both disorders are poorly understood, but hyperarousal and excessive sympathetic nervous system outflow are suspected as being significant contributors to both of these disorders. Sympathetic stress loading techniques are commonly used as intervention for both conditions.

Occupational therapy researchers are conducting studies regarding neurophysiologic parameters that would help to quantify sympathetic nervous system hyperarousal. Similar testing techniques have already been used in researching complex regional pain disorders.

Because of multiple points of commonality, assessment strategies useful for sensory modulation disorders may provide useful clinical information regarding complex regional pain syndrome. In turn, these points of commonality could provide a stronger basis of neurophysiologic rationale behind the explanation of sensory modulation disorders.

This paper describes an initial attempt at investigating the intersection of these two disorders. Researching the similarities between these two conditions provides useful clinical information that can lead to better understanding of the disorders and improved intervention strategies and patient outcomes.

II. Methodology

Sample size and composition:

Five subjects were identified for participation in the study. The subjects were all over eighteen years of age. Subject criteria stated that they could be either male or female, but had to be English speaking and residents of the Counties of Erie or Niagara in New York State. All subjects had to have a current diagnosis or recent history of complex regional pain syndrome secondary to orthopedic injuries including fractures, ligament or tendon injuries, or peripheral nerve damage.

The principal investigator provided eligibility criteria to the lead therapist at the ABC Therapeutics facility in Lockport, NY. Based on the criteria, the lead therapist used purposive sampling to develop a subject eligibility list. Subjects were then given an invitation to participate in the study. After subjects expressed interest to participate in the study, all personal and confidential information was de-identified and presented to the principal investigator. Patient charts were never viewed by the principal investigator.

Purposive sampling was used with specific selection criteria as follows: all subjects had to have current or historical clinical signs of complex regional pain syndrome; they had to be over 18 years of age at the time of their initial injury, and they were drawn from the patient pool at a private occupational therapy practice in Lockport, New York. None of the subjects will be patients of the principal investigator. Maximum variation sampling was used regarding subject gender, underlying orthopedic condition, educational attainment, and job title.

Informed consent:

Subjects who expressed an interest in participating were contacted for an appointment to discuss the study with the principal investigator and to sign the informed consent paperwork. During this appointment the principal investigator provided informed consent information to the subject to read. The principal investigator answered all questions relating to the study and the informed consent forms and followed the format as listed on the signature sheets. Once the informed consent process was completed, the subjects were invited to stay to complete the two assessments. Additional appointment times to accommodate the subject’s schedules were provided, as necessary.

Methods and Procedures

Following selection and informed consent processes, the principal investigator provided subjects with the Adolescent/Adult Sensory Profile (AASP) (Brown & Dunn, 2002) to complete. The AASP is a standardized assessment used by occupational therapists to measure sensory processing abilities and to profile the effect of sensory processing on functional performance in daily life. Dunn states that there is a relationship between neurological sensory thresholds and observed behavior (1997). The AASP (Brown & Dunn, 2002) provides an assessment of this relationship based on self-report. This measure is the most widely used and widely accepted standard used by occupational therapists for assessing SMD in adults.

Following completion of the AASP, the principal investigator administered the Canadian Occupational Performance Measure (COPM) to the subject. The COPM (Law, et. al., 1990) is an individualized, client-centered measure designed for use by occupational therapists. The COPM measures self-care, productivity and leisure outcomes. Clients rate themselves on performance and satisfaction with performance.

It is primarily designed to be used as a clinical outcome measure and is cited extensively in the occupational therapy literature. The COPM showed good evidence of concurrent criterion validity and sensitivity to change when used to measure performance after client participation in a pain management program (Carpenter, Baker, & Tyldesley, 2001).

The authors of the COPM identify that it can also be used as a measure of occupational performance in research (Law, et. al., 1990). Specifically, the authors suggest that the COPM is useful for studies aimed at understanding the determinants of occupational performance problems as well as for explanatory studies that try to show relationship between occupation and other variables. For purposes of this study, the COPM was administered once to obtain data on the subject’s perception regarding occupational performance difficulties. It was chosen for this study specifically because it elicited information regarding quality of life and satisfaction with current occupational participation (Liddle & McKenna, 2000).

Although purposive and maximum variation sampling strategies were used, the subject pool had some common characteristics. In summary, they were all within the range of 45-65 years of age. All of the subjects had a diagnosis of complex regional pain syndrome secondary to an injury. Their job titles were significantly variable and although three of the five subjects had distal upper extremity fractures, not all of them were caused by work injuries. Only one subject had education beyond high school. Three women and two men agreed to participate in the study.

The following table outlines demographic characteristics of the subject pool.

Using descriptive methods, information obtained from the AASP was graphically tabulated and analyzed to report frequencies and distributions of scores. Information from the COPM was analyzed with identical methods to report frequencies and distributions of self-reported occupational performance difficulties. Information from the COPM provided additional narrative information that assisted in descriptive analysis.

III. Results

The subjects were given the Adolescent/Adult Sensory Profile to complete. The AASP classifies responses into categories of Low Registration, Sensation Seeking, Sensory Sensitivity, and Sensation Avoiding. Scores are classified as being much less than most people, less than most people, similar to most people, more than most people, and much more than most people.

Low registration refers to a pattern of sensory processing that is characterized by high sensory thresholds and a passive self regulation strategy (Dunn, 1997). Three of the five subjects scored differently than the normative group. Two had a greater degree of low registration and one had a lower degree of low registration.

Sensation seeking refers to a pattern of sensory processing that is characterized by high sensory thresholds and an active self regulation strategy (Dunn, 1997). Two of the five subjects had lower sensation seeking scores than the normative group.

Sensory sensitivity refers to a pattern of sensory processing that is characterized by low sensory thresholds and a passive self regulation strategy (Dunn, 1997). Two of the five subjects scored differently than the normative group: one had a greater degree of sensory sensitivity and one had a lower degree.

Sensation Avoiding refers to a pattern of sensory processing that is characterized by low sensory thresholds and an active self regulation strategy (Dunn, 1997). One subject scored lower than the normative group and one scored much lower than the normative group. Another subject scored much higher than the normative group.

The following table summarizes score performance of the subject pool.

Finally, the subjects were given the Canadian Occupational Performance Measure to complete. Using the COPM scoring card the client was asked to rate the importance of each chosen activity on a scale of 1-10, (1 as not important at all and 10 as extremely important). After reviewing the ratings with the client, the top five highest scored, self- perceived problems were scored for performance and satisfaction. These were also rated on a scale of 1-10. Each score was then divided by 5 (the number of problems identified by the client).

The following table summarizes reported scores of the subject pool.

As indicated in the chart below, the most common problems highlighted by the subjects were inability to complete various aspects of dressing occupations (8 prioritized problems) and inability to work at all (5 prioritized problems). In the leisure category, two subjects specifically identified inability to participate in grandparenting occupations as a prioritized problem. The remaining prioritized problems scattered around individual tasks within the three occupational domains.

IV. Discussion

In this small sample there was evidence that all of the subjects had areas of atypical sensory processing as measured by the AASP. However, there was absolutely no consistency whatsoever in the pattern and distribution of scores on this test. The AASP measures sensory processing differences in a bidirectional manner – meaning that scores can either be higher or lower than the normative range and are considered atypical in either direction away from the mean. However, the nature of that atypicality is dependent on the directionality of difference of the scores.

As identified in the literature review there is some evidence of altered sensory thresholds leading to pain and hyperarousal in people who have CRPS. However, there was not a significant pattern of sensory sensitivity that was seen in the AASP test scores of the subjects. There are several factors that could explain why this relationship was not observed.

First, there may in fact be no relationship to CRPS hyperarousal and pre-existing sensory sensitivity as measured by the AASP. The literature provides strong face validity to the hypothesis that sensory sensitivity and the associated active sensory avoiding behaviors might be associated with the sensory processing of people who have CRPS. However, the patients in this study may have been at different stages with their CRPS and in part that could account for differences in their AASP responses. Very acute CRPS could potentially bias sensory sensitivity responses, where chronic CRPS may not.

Additionally, although the tactile hypersensitivity factors account for a degree of overall hypersensitivity scores, there are other sensory channels that are considered on the AASP. So simple tactile hypersensitivity is only a component of overall sensory sensitivity and may not be enough to trigger identification as in the sensory sensitivity quadrant on the AASP.

Second, the sample size may be too small to identify a reliable measure of sensory processing tendencies of the group. So although it is interesting that the scores of the subjects all were atypical, it is not possible to draw conclusions on this finding at this time.

It may be possible that people who have CRPS are more likely to have sensory processing disturbances that manifest atypically in directions of both hyper and hypo-arousal and responsivity. The AASP measures both behavioral responses and actual sensory perceptions. Depending on an individual’s passive or active coping strategy the nature of the difficulty may be more complex than a simple univariate model that is explained by sensitivity associated with heightened avoidance strategies. Additional research is warranted to elucidate the scoring patterns observed in this initial probe.

More directly, the subject’s prioritization and ranking of perceived occupational performance problems was clear. The subjects report significant problems with loss of ability to participate in preferred occupations, with self care being the greatest area of concern. Work and leisure concerns were also reported, but not at the same frequency. Not all disability or disease processes have a direct relationship to decreases in functional performance. In this case, whether or not there is any underlying relationship between sensory processing factors between CRPS and SMD, it is very clear that people who have these diagnoses experience significant occupational dysfunction. Self care skills and performance in daily activities are domains of concern for occupational therapists. The low COPM scores in perceived performance and satisfaction validates that people who have CRPS with SMD are good candidates for occupational therapy evaluation and intervention.

V. Summary

Complex regional pain syndrome and sensory modulation disorder are clinically distinct entities that are often treated by different populations of occupational therapists. As a result, there has not been any literature describing or exploring any intersection of these disorders. There has not been any documentation of discussion regarding the intervention strategies that overlap and address similar underlying components of both disorders.

Both disorders are poorly understood, but the literature indicates that hyperarousal and excessive sympathetic nervous system outflow are suspected as being significant contributors to both conditions. Sympathetic stress loading techniques are commonly used as intervention for both conditions. Occupational therapy researchers are conducting studies regarding neurophysiologic parameters that would help to quantify sympathetic nervous system hyperarousal. Similar testing techniques have already been used in researching complex regional pain disorders.

Because of these multiple points of commonality between the conditions, assessment strategies useful for sensory modulation disorders were used in this study to obtain additional clinical information regarding complex regional pain syndrome. Although there was no single pattern of sensory processing disorder for people who had CRPS, it was clear that they all had some degree of atypical sensory processing as measured by the AASP. Additionally, all of the subjects who had CRPS had significant occupational dysfunction as measured on the COPM.

VI. Conclusion

The research that has been completed on CRPS provides useful information for occupational therapists to consider when investigating sensory modulation disorders. This literature review and exploratory study demonstrates that there is justification for continuing to study the possible relationship between disorders that share common sensory processing factors as they have a significant impact on people’s occupational function.


Apkarian, A.V., Thomas, S., Krauss, B.R. and Szeverenyi, N.M. (2001). Prefrontal hyperactivity in sympathetically mediated chronic pain. Neuroscience Letters, 311, 193-197.

Ayres, A.J. (1979). Sensory integration and the child. Los Angeles: WPS.

Baron, R. & Wasner, G. (2001). Complex regional pain syndromes. Current Pain and Headache Reports, 5, 114-123.

Brown, C., Tolefson, N., W., Cromwell, R. & Filion, D. (2001). The adult sensory profile: Measuring patterns of sensory processing. American Journal of Occupational Therapy, 55, 75-82.

Brown, C.E. & Dunn, W. (2002). Adolescent/Adult Sensory Profile User’s Manual. San Antonio: The Psychological Corporation.

Carlson. L & Watson, H. K. (1988). Treatment of reflex sympathetic dystrophy using the stress loading program. Journal of Hand Therapy, 1, 149-154.

Carpenter, L. Baker, G.A. & Tyldesley, B. (2001). The use of the Canadian Occupational Performance Measure as an outcome of a pain management program. Canadian Journal of Occupational Therapy , 68(1), 16-22.

Chelimsky, T.C., Low, P.A., Naessens, J.M., Wilson, P.R., Amadio, P.C., O'Brien, P.C, (1995). Value of autonomic testing in reflex sympathetic dystrophy. Mayo Clinic Proceedings, 70, 1029-1040.

Drummond P.D., Finch, P.K., Skipworth, S., & Blockey, P. (2001). Pain increases during sympathetic arousal in patients with complex regional pain syndrome. Neurology 5, 1296-1303.

Dunn, W. (1997). The impact of sensory processing abilities on the daily lives of young children and their families: A conceptual model. Infants and Young Children, 9, 23-35.

Dunn, W. (1999). Sensory Profile User’s Manual. San Antonio: The Psychological Corporation.

Gulevich, S.J., Conwell, T.D., Lane, J., Lockwood, B., Schwettmann, R.S., Rosenberg, N., (1997). Stress infrared telethermography is useful in the diagnosis of complex regional pain syndrome, type I (formerly reflex sympathetic dystrophy), Clinical Journal of Pain, 13, 50-59.

Harden, R.N., Bruehl, S., Stanos, S., Brander, V., Chung, O.Y., Saltz, S. (2003). Prospective examination of pain-related and psychological predictors of CRPS-like phenomena following total knee arthroplasty: A preliminary study. Pain, 106, 393-400.

Janig, W. & Baron, R (2002). Complex regional pain syndrome is a disease of the central nervous system. Clinical Autonomic Research, 12, 150-164.

Janig, W. & Baron, R (2003). Complex regional pain syndrome: mystery explained?
The Lancet Neurology, 2, 687-97.

Juottonen, K., Gockel, M., Silen, T., Hurri, H., Hari, R., & Forss, N. (2002). Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain. 98, 315-23.

Kandel, E.R. & Jessell, T.M.(2001). Touch, in Kandel, E.R., Schwartz, J.H. & Jessell, T.M. (Eds.). Principles of Neural Science, 3rd ed. New York: Elsevier.

Kinnealey M.., Fuiek, M. (1999) The relationship between sensory defensiveness, anxiety, depression and perception of pain in adults. Occupational Therapy International. 6, 195-206.

Kinnealey, M. & Oliver, B. (2002). The Adult Sensory Questionnaire. Retrieved July 17, 2004 from

Law, M., Cooper, B., Strong, S., Stewart, D., Rigby, P., & Letts, L. (1996). The Person-Environment-Occupation Model: A transactive approach to occupational performance. Canadian Journal of Occupational Therapy, 63, 9-23.

Law, M., Baptiste, S., McColl, M.A., Opzoomer, A., Polatajko, H. & Pollock, N. (1990). The Canadian Occupational Performance Measure: An outcome measure for occupational therapy. Canadian Journal of Occupational Therapy, 57(2), 82-87.

Liddle, J & McKenna, K. (2000). Quality of Life: An overview of issues for use in occupational therapy outcome measurement. Australian Occupational Therapy Journal, 47, 77-85.

Low, P.A., Caskey, P.E., Tuck, R.R., Fealey, R.D., Dyck, P.J. (1983). Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Annals of Neurology, 14, 573-580.

Lynch, M. (1992). Psychological aspects of reflex sympathetic dystrophy: a review of the adult and paediatric literature. Pain. 49, 337-347.

Maihofner C., Handwerker, H.O., Neundorfer, B., Birklein, F. (2003). Patterns of cortical reorganization in complex regional pain syndrome. Neurology, 61, 1707-15.

Maleki, J., LeBel, A.A., Bennett, G.J., & Schwartzman, R.J. (2000). Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy). Pain, 88, 259-66

McIntosh DN, Miller LJ, Shyu V, Hagerman RJ. (1999). Sensory-modulation disruption, electrodermal responses, and functional behaviors. Developmental Medicine and Child Neurology, 41, 608-15.

Melzack, R. & Wall, P. (1965). Pain mechanisms: A new theory, Science, 150, 171-179.

Miller L.J., McIntosh, D.N., McGrath, J., Shyu, V., Lampe, M., Taylor, A.K., (1999). Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: A preliminary report. American Journal of Medical Genetics, 83, 268-79.

Miller, L. J., Reisman, J. E., McIntosh, D. N., & Simon, J. (2001). An ecological model of sensory modulation: Performance of children with fragile X syndrome, autistic disorder, attention-deficit/hyperactivity disorder, and sensory modulation dysfunction. In S. Smith-Roley, E. I. Blanche, & R. C. Schaaf (Eds.), Understanding the nature of sensory integration with diverse populations (pp. 57-88). San Antonio, TX: Therapy Skill Builders.

National Institute for Neurological Disorders and Stroke (2003). Complex Regional Pain Syndrome (also called Reflex Sympathetic Dystrophy Syndrome) Fact Sheet. Retrieved May 14, 2004 from

National Pain Foundation (2003). How CRPS Happens. Retrieved June 3, 2004 from

Parham, L.D. & Mailloux, Z. (2001). Sensory integration. In J.Case-Smith (Ed.), Occupational therapy for children (4th ed.). St. Louis: Mosby.

Pfeiffer, B. & Kinnealey, M. (2003) Treatment of sensory defensiveness in adults. Occupational Therapy International, 10, 175-184.

Phillips, M.E., Katz, J.A., & Harden, R.N. (2000). The use of nerve blocks in conjunction with occupational therapy for complex regional pain syndrome type I. American Journal of Occupational Therapy. 54, 544-549.

Reisman, J.E., & Gross, A.Y. (1992) Psychophysiological measurement of treatment effects in an adult with sensory defensiveness. Canadian Journal of Occupational Therapy, 59, 5248-5257.

Rho, R.H., Brewer, R.P., Lamer, T.J., Wilson, P.R. (2002). Complex regional pain syndrome. Mayo Clinic Proceedings, 77, 174-180.

Rommel, O., Malin, J., Zenz, M., & Jänig, W. (2001). Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits. Pain, 93, 279-293.

Schaaf, R.C., Miller, L.J., Sewell, D., & O'Keefe, S. (2003). Children with disturbances in sensory processing: A pilot study examining the role of the parasympathetic nervous system. American Journal of Occupational Therapy, 57, 442-449.

Schiepers, C. (1997). Clinical value of dynamic bone and vascular scintigraphy in diagnosing reflex sympathetic dystrophy of the upper extremity. Hand Clinics, 13, 423-429.

Schwoebel, J., Friedman, R., Duda, N., Coslett, H.B. (2001). Pain and the body schema: evidence for peripheral effects on mental representations of movement. Brain, 124, 2098-104.

Stanton-Hicks, M., Janig, W., Hassenbusch, S., Haddox, J.D., Boas, R., Wilson, P. (1995). Reflex sympathetic dystrophy: Changing the concepts and taxonomy, Pain: 63, 127-133.

Van Houdenhove, B., & Vasquez, G. (1993). Is there a relationship between reflex sympathetic dystrophy and helplessness? General Hospital Psychiatry, 15, 325-329.

Wasner, G., Schattschneider, J., Binder, A., & Baron, R. (2003). Complex regional pain syndrome--diagnostic, mechanisms, CNS involvement and therapy. Spinal Cord. 41, 61-75.

Wilbarger, J.L. & Wilbarger, P.L. (2002). The Wilbarger approach to treating sensory defensiveness, In Bundy, A.C., Murray, E.A., & Lane, S. (Eds.). Sensory Integration: Theory and Practice, 2nd Ed., Philadelphia, PA.: F.A. Davis.


Many thanks to Dr. Carol Reed and Dr. Sandee Dunbar who both provided neverending encouragement, review, and editing for this project.

"I'll see you always."

(second in a recent series of self indulgent reflections on parenting)

Kids say things to parents and parents never forget those words. This goes for the things that you said to your parents and the things that your children say to you.
That is why there is an unspoken understanding between children and parents that persists. Parents love their children and children love their parents. Even when other things sometimes get in the way.

There is little that is worse in my life than moments of separation from my children. The bittersweet part of this is that the children know this too. I guess I am not so good at hiding it.

I am away from my children this weekend, and it makes me think back to another time when we were separated because of my work.

I had just finished packing the kids into the van for their trip. They had it all planned when I tucked them into bed the previous night: they did not want to wake up, and they wanted me to carry them into the van and snuggle them in with their favorite travelling Scooby Doo blankets and their favorite pillows. They were to sleep through it all.

I was a little concerned about carrying them to be honest. My right knee does not function reliably when I first get out of bed so I made sure to get up a little early and do the stairs a couple times to make sure all parts of my body were fully awake.

Of course that is not what happened. They each popped out of bed, eager for their trip and seeing my parents and siblings and their families. I thought I had gotten out of having to carry them to the van, but they still insisted (it was part of the plan, you know - we can't deviate from previously agreed upon issues...).

My middle daughter wanted the row of seats in the rear, and I got her in securely and she held my face and kissed me goodbye. "Goodbye Daddy... I love you."

My youngest daughter wanted the middle row, and she too got placed in securely. Then she too held my face, kissed me, but then said, "I love you too. But don't worry Daddy. I'll see you always."

"Oh Casey, what do you mean by that?" I asked her.

"I don't want to say that 'I will see you later.' I just mean that I will be thinking of you all the time in my head when I am away. OK? I'll see you always Daddy."

Kids always have a way of putting things. Straight to my heart.

Friday, October 10, 2008

On the intersection of being a parent and being an occupational therapist

I spend so much of my professional time discussing parenting with parents - it only seems fair that I share some of my own parenting experiences.

I always feel that it is important that I tell parents that I understand their limitations because I have the same limitations that they do. I don't often get to give examples though so it seems that this is a good opportunity.

I have been thinking about the time that my daughter fractured her wrist - and I was too busy to notice. Sometimes I am not sure if time goes on around me, and events occur... or if I am actually a part of the stream itself, and time is happening with me. What I mean by this is that there always seem to be so many things going on and I grasp at those things that seem important - but it does not resolve the issues of those things that go past me. Only some don't go past - they stick to me, waiting for me to either liberate them back into the stream or do whatever else needs to be done.

Either way, sometimes when you are a parent large and unavoidable issues come rip-roaring down the stream and need to be attended to immediately. This story explains one of those times:

I sent my daughters away to my sister's care and of course the girls were incredibly indulged. It was a once a year getaway from parents and they thoroughly enjoyed it.

Sometimes I felt badly about subjecting my family to Casey, the youngest. She is so free spirited, so reckless and fearless: she really required high maintenance parenting - of course never in a bad way... just in Casey's way.

Case in point: while swinging much too high on a swing in the park, and directly under the watchful eye of my sister, she suddenly screamed out, "Look Aunt Steph - see what I can do..." and proceeded to propel herself out of the swing at it's highest point of motion and go flying through the air, landing directly upon her wrist.

I always had to be very careful of what Casey watched on television as she would try anything. The worst was watching her go flying down the stairs in the laundry basket like a sled a la Rugrats. She blew right threw the spindles on the first landing and crashed the final four feet or so to the ground without the benefit of stairs - she thought it was fun. Jumping off the swing was just par for the course.

Anyway I didn't think much of her jump from the swing, although my sister did call me in a paranoid way asking my opinion. But Casey was moving her wrist, not complaining, and ready to play some more. So I forgot about it.

I picked the girls up and got home late on a Saturday night. She complained a little that her wrist was sore, but I thought she was just feigning attention (part of the whole coming home thing, I figured). I ignored her complaints.

The next day was so busy with family obligations, the poor child got lost in the shuffle. She played with her cousins. And I ignored her a second day.

After two days I finally paid attention to my poor child. She didn't want to spend the day with me, and so I took her to daycare (where all her afterschool friends went). As a father I learned that there are times when I am just not cool to hang out with, so I learned to deal with the rejection. That morning she told me that her wrist hurt, and I made a mental note to myself to ask her again later...

So when I picked her up from daycare I again asked her how it was, and really took the time to watch her. She was holding her arm close to her body, and was using her left hand more than she usually did. Then I looked at her forearm and it actually looked a little swollen. Then I began paying close attention and actually started palpating - and found a very discrete spot over her distal radius that was extremely tender to even the slightest pressure.

I looked for black and blue marks and could not find any, but the swelling was notable. Her MD wouldn't see her until the morning, and by that point I was feeling horribly guilty about my inability to function as a parent so I made her a fracture brace to hold it into place until the orthopedist casted her.

The primary MD appointment was the next morning at 9am, at which time we would get xrays. But I saw this a hundred times before, and I didn't even need x-rays. I knew that she had a Colles' fracture.

Casey forgave me that night, touching my face as I tucked her into bed. And she loved the fracture brace I made. It is a tangible thing that made her feel like Dad was taking care of things. Poor Casey found some limits (due to pain associated with using her arm). And I guess I found some of mine too. I just can't believe that I let them slide in such a way that it had an impact on her.

My redemption occured when the orthopedist let her use the fracture brace for a couple weeks rather than casting. The fracture was not serious and the brace served the purpose.

It allowed me to re-earn the whole SuperDad designation again. My reputation needed a revival of epic proprtions. At least if I was going to deserve her anyway.

Thursday, October 09, 2008

Guest entry and debate on what constitutes occupational therapy practice

I received an email from Michele Karnes who wrote the following in the interest of advancing the debate on recent postings and comments regarding interventions that I consider quackery. Michele writes:

This offers a different view in response to your continuing competency column, OT's should be made aware of treatments that are offered to clients/patients, whether it is traditional or non-traditional, a long existing treatment or new one. This enables our OT profession and professionals to better educate the people they treat and interact with.

Instead of taking anyone's word that a particular treatment is 'mysticism' (as you put it) or the best thing since sliced bread, the OT who attends a 2-3 hour session can be introduced to the history and theory, what the treatment or program consists of, indications/contraindications, etc.

In response to Quantum Touch, it is based on the chi concept much like Tai Chi but focuses on therapeutic touch, a long standing principle used in OT. From the Quantum Touch website: “In principal the Quantum-Touch practitioner learns to focus and amplify life-force energy ("Chi" or "Prana") by combining various breathing and body awareness exercises” (I fail to see the problem with this). Additionally, “Over the past eight years, …have taught QT to well over 4000 people. Without exception, professional practitioners of the various modalities have told me that this work can be seamlessly combined with what they know, and in most cases it has transformed their practice. This list includes chiropractors, osteopaths, physical therapists, acupuncturists, cranial sacral therapists, chi gung instructors, and reiki masters, to name but a few”.

Notice the absence of OT, whether we buy into it or not is our own personal preference, however when talking to another health professional, it seems you would rather OT be clueless about what it is, who does it and what the theories behind it are. Tai chi has only become more evidence based recently and early practitioners were pooh-poohed!

Your comment "Undoubtedly, continuing education organizers and providers reap reasonable financial dividends through their offerings" couldn't be further from the truth, if fact one of the reasons this company was formed was to provide accessible, affordable, quality continuing education to our local health providers. The fees are low, food is often provided as well as current information offered by quality speakers who have vast experience in the content area. While Evidence Based Practice is on all of our minds, and ultimately the best to utilize with our patients, if we only used treatments for all of these years we would have missed out on the many treatments that OT’s have historically (and still) use.

Additionally, IACET is the gold standard of continuing education, AOTA CEUs have fewer standards and the standards they have are in line with IACET. IACET enables OT/PT/ST/Athletic trainers and others to learn in an interdisciplinary manner which is highly encouraged by the Institute of Medicine in “Crossing the Quality Chasm: A New Health System for the 21st Century”.

I would also like to urge those that question a practice or program to at least attend an event and look for yourself, much like the therapists who have found this to be a valuable resource!

Thanks for having an open mind!

Michele Karnes

I still believe that Quantum Touch has absolutely no value and should never be accepted as continuing education for occupational therapists. In my opinion it has absolutely nothing to do with the occupational therapy scope of practice as defined by our state law and I believe you would be hard-pressed to find an ACOTE standard that demands the inclusion of this intervention into any curriculum.

If Quantum Touch was only about "breathing and body awareness exercises" than I might not object - but in fact the Quantum Touch website makes claims that this technique can cause remissions of breast and liver cancer, cure scoliosis and other orthopedic misalignments, reduce deformities from rheumatoid arthritis and eliminate panic attacks, reshape bunions and heal deformed or broken bones... the list goes on. It can also apparently be done through 'telephone healing' and even children can do it. It also prevents flowers from wilting and can cause people to smile broadly. All these claims are made on the website at;view=article&id=3&Itemid=58. This does not constitute responsible occupational therapy practice in my opinion.

So actually I don't believe that professionals should be "clueless." People can go read the New York State law governing occupational therapy practice, they can read the ACOTE standards, and then they can read the outrageous claims on the Quantum Touch website. Then they can go read the evidence:

As you are undoubtedly aware, this is not my opinion alone. There are many studies that completely discredit energy healing and it is not accepted by the medical community at large. In fact, if I were to attempt to use a form of energy healing in my practice for a patient who had an acute hand injury I would not improve the patient's condition, the doctor would never refer to occupational therapy again, and I would open myself up to a significant lawsuit for professional malpractice. The premise that this is somehow an acceptable intervention and something that we should be educating occupational therapists on is almost beyond my comprehension.

Michele states that Quantum Touch is based on the concept of Therapeutic Touch. Perhaps the most famous evidence that we have to date that undoubtedly proves that this is a sham is from the article published in JAMA on the inspiration of the 11 year old's fourth grade science fair project - where people who were energy healers only identified an 'energy field' 44% of the time - less than by chance! So much for Therapeutic Touch.

Just because people seek out alternative energy healing interventions doesn't mean that it constitutes appropriate or ethical practice. In an article published in the Journal of the American Medical Association on this topic an author writes: "Given the extensive use of CAM services and the relative paucity of data concerning safety, patients may be putting themselves at risk by their use of these treatments. Only fully competent and licensed practitioners can help patients avoid such inappropriate use... Physicians can also ensure that patients do not abandon effective care and alert them to signs of possible fraud or danger."

When I was much younger and less skilled in researching evidence I went to a course because I wanted to 'see for myself' what it was about. The course was on pediatric myofascial release - and there is no shortage of controversy on whether or not this is a sham intervention. In the course they wanted us to "feel" craniosacral rhythm - and the "instructional technique" was to have us place one hand on our partner's sacrum and the other on their occiput while they were lying supine. Then they dimmed the lights, played background music with the sound of ocean waves crashing on the shore, and the course instructors walked to each set of participants and placed their hands on top of the 'therapist's hands' using alternating gentle pressure and stating "Can't you feel that?" What a joke. Since that time I have learned that I don't always need to go to a course to find out for myself - because the courses invariably have more to do with suggestion and indoctrination and very little to do with real science.

Over time I have come to understand that I don't need to step into a cowpie just because I want to experience it for myself. Sometimes the smell of it from a distance is enough for me. But I am just a street level practitioner with a computer and an opinion. People can decide for themselves.


Jonas W. (1998) Alternative medicine and the conventional practitioner. JAMA, 279, 708-709.

Rosa L, Rosa E, Sarner L, Barrett S. (1998). A close look at Therapeutic Touch. JAMA, 279:1005-1010.